/// Ηλιακή Ενέργεια – Φωτοβολταϊκά

Ο ήλιος είναι η βασική πηγή ενέργειας του πλανήτη μας καθώς δίνει ζωή σε κάθε οργανισμό της βιόσφαιρας, δημιουργεί τους ανέμους, παράγει την αποθηκευμένη χημική ενέργεια σε ξύλα και ορυκτά καύσιμα, και επομένως είναι η πηγή όλης σχεδόν της ενέργειας που χρησιμοποιούμε. Ο ήλιος είναι απλανής αστέρας μέσου μεγέθους όπου, λόγω των μεγάλων θερμοκρασιών που επικρατούν (μερικών εκατομμυρίων οC), τα μόρια και άτομα των στοιχείων που τον συνθέτουν βρίσκονται σε κατάσταση νέφους θετικών και αρνητικών ιόντων με αποτέλεσμα να γίνεται πυρηνική σύντηξη. Με την σύντηξη αυτή παράγονται τεράστιες ποσότητες ενέργειας και ακτινοβολούνται προς όλες τις κατευθύνσεις στο διάστημα. Η γη συλλαμβάνει το ένα δισεκατομμυριοστό της εκπεμπόμενης ηλιακής ακτινοβολίας, που όμως αντιστοιχεί σε τεράστια ενεργειακή ποσότητα αν αναλογιστούμε ότι η ηλιακή ενέργεια που φτάνει στη γη σε μία εβδομάδα είναι περίπου ίση με τη συνολικά αποθηκευμένη ενέργεια όλων των καυσίμων του πλανήτη.

Η ηλιακή ακτινοβολία αξιοποιείται για την παραγωγή ηλεκτρισμού με δύο τρόπους: θερμικές και φωτοβολταϊκές εφαρμογές. Η θερμική αξιοποίηση περιλαμβάνει συλλογή της ηλιακής ενέργειας για να παραχθεί θερμότητα κυρίως για θέρμανση νερού και μετατροπή του σε ατμό για την κίνηση ατμοστροβίλων. Στη δεύτερη εφαρμογή τα φωτοβολταϊκά συστήματα μετατρέπουν άμεσα την ηλιακή ακτινοβολία σε ηλεκτρισμό με τη χρήση φωτοβολταϊκών κυψελών ή συστοιχιών τους. Η συγκεκριμένη τεχνολογία εμφανίστηκε στις αρχές της δεκαετίας του 1970 στα διαστημικά προγράμματα των ΗΠΑ. Η εξέλιξή της επέτρεψε τη μείωση του κόστους στην παραγωγή ηλεκτρισμού από $300 σε $4 ανά Watt.

Αν και όλη η γη δέχεται την ηλιακή ακτινοβολία, η ποσότητά της στην επιφάνεια κάθε τόπου εξαρτάται κυρίως από τη γεωγραφική του θέση, την εποχή και τη νεφοκάλυψη. Η έρημος π.χ. δέχεται περίπου το διπλάσιο ποσό ηλιακής ενέργειας από άλλες περιοχές. Στο μεγαλύτερο τμήμα της χώρα μας η ηλιοφάνεια διαρκεί περισσότερες από 2700 ώρες το χρόνο. Στη Δυτική Μακεδονία και την Ήπειρο εμφανίζει τις μικρότερες τιμές, κυμαινόμενη από 2200 ως 2300 ώρες, ενώ στη Ρόδο και τη νότια Κρήτη ξεπερνά τις 3100 ώρες ετησίως. Συνεπώς η Ελλάδα αποτελεί μία από τις κατεξοχήν κατάλληλες περιοχές της Ευρωπαϊκής Ένωσης (ΕΕ) για εφαρμογές εκμετάλλευσης της ηλιακής ενέργειας.

Αξιοποίηση της ηλιακής ακτινοβολίας στην παραγωγή ηλεκτρισμού

Η εκμετάλλευση της ηλιακής ενέργειας στην παραγωγή ηλεκτρισμού γίνεται κύρια με τη χρήση των ηλιακών φωτοβολταϊκών συστημάτων (Φ/Β), που η λειτουργία τους στηρίζεται στο φωτοβολταϊκό φαινόμενο, δηλαδή την άμεση μετατροπή της ηλεκτρομαγνητικής ακτινοβολίας σε ηλεκτρικό ρεύμα.

Τα φωτοβολταϊκά κύτταρα κατασκευάζονται από ημιαγώγιμα υλικά, όπως το πυρίτιο που είναι το συνηθέστερο. Όταν το ηλιακό φως προσπίπτει στο φωτοβολταϊκό κύτταρο, μέρος της ακτινοβολίας διεγείρει ηλεκτρόνια τα οποία μπορούν να κινούνται σχετικά ελεύθερα μέσα στον ημιαγωγό. Η εφαρμογή ηλεκτρικού πεδίου υποχρεώνει τα ελεύθερα ηλεκτρόνια να κινηθούν προς συγκεκριμένη κατεύθυνση, παράγοντας ηλεκτρικό ρεύμα του οποίου η ισχύς καθορίζεται από τη ροή των ηλεκτρονίων και την εφαρμοζόμενη τάση στο φωτοβολταϊκό κύτταρο. Η ροή αυτή των ηλεκτρονίων δημιουργεί το ρεύμα, και το ηλεκτρικό πεδίο δημιουργεί την τάση του ρεύματος.

Το μέγιστο θεωρητικό ποσό ενέργειας που μπορεί να απορροφήσει ένα φωτοβολταϊκό κύτταρο είναι περίπου το 25% της ενέργειας που δέχεται, αλλά το πιο συνηθισμένο ποσοστό είναι λιγότερο από 15%. Καθώς η ηλιακή ηλεκτρομαγνητική ακτινοβολία δεν είναι μονοχρωματική, αποτελείται από φάσμα διαφορετικών μηκών κυμάτων, άρα και από φωτόνια διαφορετικών επιπέδων ενέργειας. Τα φωτόνια χαμηλού ενεργειακού περιεχομένου δεν μπορούν να διεγείρουν ηλεκτρόνια του ημιαγωγού και απλώς διέρχονται μέσα από το φωτοβολταϊκό κύτταρο. Μόνο τα φωτόνια που μεταφέρουν μεγαλύτερη ή ίση ενέργεια από ένα συγκεκριμένο ποσό που εξαρτάται από το υλικό που είναι κατασκευασμένο το κύτταρο μπορούν να ελευθερώσουν ηλεκτρόνια. Η τεχνολογία των ημιαγώγιμων υλικών επέτρεψε την αξιοποίηση της ηλιακής ακτινοβολίας στην παραγωγή ηλεκτρισμού, καθώς ενδεχόμενη χρήση αγώγιμων υλικών, όπως τα μέταλλα, θα οδηγούσε μεν σε μεγαλύτερη ροή ηλεκτρονίων αλλά θα παρουσίαζε πολύ χαμηλή τάση πεδίου.

Η μέγιστη πραγματική απόδοση των φωτοβολταϊκών στοιχείων, ανάλογα με το υλικό κατασκευής τους, κυμαίνεται από 7% (ηλιακά στοιχεία άμορφου πυριτίου) έως 12-15% (ηλιακά στοιχεία μονοκρυσταλλικού πυριτίου). (Μαλαμής Β, 1999). Καθώς η παραγόμενη με τον τρόπο αυτό ενέργεια μπορεί να αποθηκευτεί σε ηλεκτρικούς συσσωρευτές, δίνεται η δυνατότητα αξιοποίησης μιας καθαρής, ανανεώσιμης ενέργειας στην κάλυψη αναγκών λειτουργίας επιστημονικών συσκευών (όπως οι δορυφόροι), για την κίνηση ελαφρών αυτοκινήτων (ηλιακά αυτοκίνητα), για τη λειτουργία απομονωμένων εγκαταστάσεων (π.χ. φάρων), και για την κάλυψη έστω και μέρους των ενεργειακών αναγκών κατοικιών, όπως φωτισμός, τηλεπικοινωνίες, ψύξη και ηχητική κάλυψη.

Τα πλεονεκτήματα από τη χρήση των φωτοβολταϊκών είναι :

  • Μηδενική ρύπανση
  • Αθόρυβη λειτουργία
  • Αξιοπιστία και μεγάλη διάρκεια ζωής
  • Απεξάρτηση από τροφοδοσία καυσίμων
  • Δυνατότητα επέκτασης
  • Μηδενικό κόστος παραγωγής ενέργειας – ελάχιστη συντήρηση

και τα αντίστοιχα μειονεκτήματα είναι:

  • Κόστος κατασκευής
  • Προβλήματα αποθήκευσης ενέργειας

/// ΕΡΓΑ SmartECO

Μέσα από εξειδικευμένες μελέτες και πρότυπες μεθόδους ανάπτυξης και εφαρμογής ενεργειακών έργων, δίνει ποιοτικές λύσεις με το «κλειδί στο χέρι». Για να δείτε περισσότερα έργα κάντε κλικ εδώ.


Do NOT follow this link or you will be banned from the site!